Monitoring Phosphorus, Nitrogen and Pathogenic Bacteria in the Cayuga Lake Watershed, 2004-Present

Presentation to the Cayuga County Water Quality Management Agency
March 7, 2019
Cayuga County Natural Resources Center, 7413 County House Road, Auburn, NY

Stephen Penningroth, Ph.D., Director, Community Science Institute
What is the Value of Long-Term, Comprehensive Chemical Water Quality Data Sets for Watershed Management?

• Long-term, comprehensive, chemical water quality data sets are indispensable tools:
 — For understanding shared water resources
 — For managing shared water resources in a collective, equitable and effective manner

• Definition of terms
• “Long-term” means continuous, year after year
• “Comprehensive” means:
 — Sampling repeatedly at multiple sites along a stream
 — Sampling under a wide range of flow conditions
 — Analyzing for phosphorus and nitrogen nutrients, pathogenic bacteria, sediment, and salt using NELAC-certified methods in order to produce regulatory-quality data
 — Analyzing for other parameters as indicated by land use or public health concerns, e.g., metals, pesticides, microcystin toxin
Long-term, Comprehensive Water Quality Data Sets Make It Possible To:

- Make generally accurate statements about water quality in monitored water bodies (as opposed to making sweeping assumptions about unmonitored water bodies)
- Identify sub-watersheds, and also catchment areas within sub-watersheds, that may be contributing disproportionately to pollutant loading
- Obtain nutrient loading estimates sufficient to focus watershed management efforts
- Assess public health risks due to pathogenic bacteria in streams and lakes
- Document long-term water quality trends and take corrective action, as appropriate
- Detect significant changes in monitored water quality parameters over time
Long-Term, Comprehensive Water Quality Data Sets Are Extremely Rare

• Only a handful of high-profile watersheds are monitored extensively, e.g., the Chesapeake Bay watershed, Lake George, Lake Champlain
Long-Term, Comprehensive Water Quality Data Sets Are Extremely Rare

- Monitoring is not particularly popular with agencies and universities, which tend to privilege:
 - Short-term hypothesis-testing studies (considered scientifically exciting) over long-term monitoring (considered scientifically boring)
 - Sample collection by paid staff and students over sample collection by trained volunteers (even though some volunteers have advanced degrees)
 - Mathematical modeling, which is much easier than collecting actual monitoring data (though less accurate, according to EPA, and not necessarily cheaper)
CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.
CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.
CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.
Who we are and what we do

CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.

CSI’s Mission:

CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.

Small Nonprofit 501(c)3

NY State and EPA Certified Lab

Online Public Database

Volunteer Water Monitoring Partnerships

Chemical Monitoring Partnerships

Biological Monitoring Partnerships

Outreach and Education Initiatives

CSI's Mission:
CSI partners with community-based volunteer groups to better understand and protect local streams and lakes by collecting and disseminating scientifically credible, regulatory-quality data that inform long-term, sustainable management strategies.
Volunteer Monitoring Partnerships

Synoptic Chemical Sampling – Cayuga and Seneca Lake Watersheds
- Impacts from agriculture, urban development, point sources

Red Flag Chemical Monitoring – Upper Susquehanna Watershed
- Baseline and nutrient data collection on small streams

Biological Monitoring (BMI) – Any stream of local interest
- Aquatic insect communities show long-term water quality
Certified Lab

- Regulated by NYS Department of Health
 - Regulatory & Legal purposes
- Potable and Non-potable water
- Chemistry & Microbiology
- Full list of tests and fees online

Michi tests for total coliform and E. coli bacteria

Learn more about testing your drinking water at www.communityscience.org/certified-lab/

After the assay is complete, bacteria colonies grow and are counted on plates.
Online Databases for Surface Water, Groundwater and (coming in 2019) BMI and HABs

- Raw stream monitoring data are archived in **public** online databases that may be searched and downloaded **free** of charge
- Goal is to disseminate scientifically credible results to the public, to local and regional stakeholders, and to government agencies at all levels in order to improve water resource understanding and management
- Streams and lakes database launched in 2006
- Groundwater database launched in 2014
- BMI and HABs databases in 2019
Volunteer Water Monitoring Partnerships

Three Volunteer Water Monitoring Programs

• Synoptic Sampling
• Red Flag Monitoring
• Biomonitoring

Synoptic Monitoring Partnerships
Certified laboratory analyses

Red Flag Monitoring Partnerships
Quality-assured field measurements

Biomonitoring Partnerships
Benthic macroinvertebrates
Focus of this Talk is the Cayuga Lake Watershed Where CSI Has Most of its Volunteer Monitoring Partnerships

- **Cayuga Lake** is monitored at several locations 2 – 3 times a year in collaboration with the Floating Classroom and Tompkins County 4-H

- Fifteen (15) sub-watersheds are monitored 3-4 times a year at over 100 sampling locations in partnership with eleven (11) volunteer groups

- Samples are analyzed for SRP, TP, TN, E. coli, chloride (3x/year); and TSS, turbidity, specific conductance, total hardness, alkalinity, pH, dissolved oxygen (1x/year)

- CSI’s Cayuga Lake watershed monitoring program is covered by a FL-LOWPA-approved QAPP
Phosphorus and Nitrogen Levels Remain Constant in Southern Cayuga Lake, 2006-2018; Chloride Shows Upward Trend

Middle of Lake Opposite Salmon Creek
Mean Concentrations of SRP ("Bioavailable Phosphorus") Throughout Selected Sub-watersheds of Cayuga Lake

"Base Flow" Conditions

- Fall Creek (2004 - 2018)
- Six Mile Creek (2004 - 2018)
- Salmon Creek (2006 - 2018)
- Paines Creek (2009 - 2018)
- Dean's Creek (2015 - 2018)
- Yawger Creek (2017 - 2018)
- Great Gully (2017 - 2018)

"Stormwater" Flow Conditions

- Fall Creek (2004 - 2018)
- Six Mile Creek (2004 - 2018)
- Salmon Creek (2006 - 2018)
- Paines Creek (2009 - 2018)
- Dean's Creek (2015 - 2018)
- Yawger Creek (2017 - 2018)
- Great Gully (2017 - 2018)
Mean Concentrations of Inorganic Nitrogen Throughout Selected Sub-Watersheds of Cayuga Lake

"Base Flow" Conditions

- Fall Creek (2002 - 2018)
- Six Mile Creek (2004 - 2018)
- Salmon Creek (2006 - 2018)
- Paines Creek (2009 - 2018)
- Dean's Creek (2009 - 2018)
- Yawger Creek (2017 - 2018)
- Great Gully (2017 - 2018)

"Stormwater" Flow Conditions

- Fall Creek (2002 - 2018)
- Six Mile Creek (2004 - 2018)
- Salmon Creek (2006 - 2018)
- Paines Creek (2009 - 2018)
- Dean's Creek (2009 - 2018)
- Yawger Creek (2017 - 2018)
- Great Gully (2017 - 2018)
Mean Concentrations of Total Nitrogen Throughout Selected Sub-Watersheds of Cayuga Lake

"Base Flow" Conditions

"Stormwater" Flow Conditions

Note: no total nitrogen data for Paines and Dean's Creeks under stormwater flow conditions.

Note: no total nitrogen data for Six Mile Creek under base flow conditions.
Mean Concentrations of E. coli Throughout Selected Sub-Watersheds of Cayuga Lake

“Base Flow” Conditions

- Fall Creek (2003 - 2018)
- Six Mile Creek (2004 - 2018)
- Salmon Creek (2006 - 2018)
- Paines Creek (2009 - 2018)
- Dean's Creek (2009 - 2018)
- Yawger Creek (2017 - 2018)
- Great Gully (2017 - 2018)

“Stormwater” Flow Conditions

- Mean Concentrations of E. coli Throughout Selected Sub-Watersheds of Cayuga Lake

Cayuga Lake
Sampling Location, Miles from Mouth
Nutrient Loading Estimates, “South” and “North”

- Phosphorus and nitrogen loading are estimated for southern Cayuga Lake tributaries based on Loadest software from USGS calibrated using: a) Nutrient concentration data from volunteer-CSI monitoring partnerships, and b) Flows from USGS gauging stations on Fall, Six Mile and Salmon Creeks. For ungauged streams, flows are estimated on the basis of drainage area ratios.

- For sub-watersheds north of the mouth of Salmon Creek, there is not yet enough nutrient concentration data to calibrate Loadest. Nevertheless, loads can be approximated if it is assumed that:
 1. Loads are proportional to sub-watershed area
 2. Loads are proportional to stormwater nutrient concentrations
 3. A known nutrient load can be used as a reference

- Using Fall Creek as a reference, SRP and Inorganic Nitrogen loads are approximated as follows:
 - SRP Load = Fall Creek SRP Load \times \left(\frac{\text{Area}}{129 \text{ mi}^2}\right) \times \left(\frac{\text{Stormwater SRP}}{25.06 \text{ ug P/L}}\right)
 - Inorganic Nitrogen Load = Fall Creek NOx Load \times \left(\frac{\text{Area}}{129 \text{ mi}^2}\right) \times \left(\frac{\text{Stormwater NOx}}{0.84 \text{ mg N/L}}\right)
Bioavailable Phosphorus Loading to Cayuga Lake

Sub-Watershed (North to South)

<table>
<thead>
<tr>
<th>Sub-Watershed (North to South)</th>
<th>Monitored Drainage Area (mi²)</th>
<th>Estimated SRP Loading (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yawger Creek*</td>
<td>24.9</td>
<td>6.39</td>
</tr>
<tr>
<td>Great Gully*</td>
<td>15.6</td>
<td>2.70</td>
</tr>
<tr>
<td>Canoga Creek*</td>
<td>5.83</td>
<td>1.22</td>
</tr>
<tr>
<td>Williamson Creek*</td>
<td>1.40</td>
<td>0.27</td>
</tr>
<tr>
<td>Burroughs Creek*</td>
<td>3.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Deans Creek*</td>
<td>3.2</td>
<td>1.12</td>
</tr>
<tr>
<td>Paines Creek*</td>
<td>15.3</td>
<td>2.52</td>
</tr>
<tr>
<td>Mill Creek*</td>
<td>1.4</td>
<td>0.24</td>
</tr>
<tr>
<td>Town Line Creek*</td>
<td>1.7</td>
<td>0.20</td>
</tr>
<tr>
<td>Trumansburg Creek*</td>
<td>13.07</td>
<td>0.76</td>
</tr>
<tr>
<td>Taughannock Creek*</td>
<td>66.8</td>
<td>2.31</td>
</tr>
<tr>
<td>Salmon Creek*</td>
<td>89.2</td>
<td>7.59</td>
</tr>
<tr>
<td>Fall Creek^</td>
<td>129.0</td>
<td>4.34</td>
</tr>
<tr>
<td>Cayuga Inlet^</td>
<td>158.0</td>
<td>3.14</td>
</tr>
</tbody>
</table>

Northern Watershed Loading Extrapolation

- **Northern Watershed Drainage Area**: 332 mi²
- **Total Estimated SRP Load**: 15.6 tons/yr

\[
\text{Northern Watershed Loading Extrapolation} = \left(\frac{332 \text{ mi}^2}{73.03 \text{ mi}^2} \right) \times 15.62 \text{ tons/yr}
\]

\[
= 71.0 \text{ tons/yr}
\]
Inorganic Nitrogen Loading to Cayuga Lake

Watershed (North to South)

<table>
<thead>
<tr>
<th>Watershed (North to South)</th>
<th>Monitored Drainage Area (mi^2)</th>
<th>Estimated Inorganic Nitrogen Loading (tons/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yawger Creek*</td>
<td>24.9</td>
<td>131.48</td>
</tr>
<tr>
<td>Great Gully*</td>
<td>15.6</td>
<td>67.44</td>
</tr>
<tr>
<td>Canoga Creek*</td>
<td>5.83</td>
<td>43.00</td>
</tr>
<tr>
<td>Williamson Creek*</td>
<td>1.40</td>
<td>7.46</td>
</tr>
<tr>
<td>Burroughs Creek*</td>
<td>3.7</td>
<td>27.29</td>
</tr>
<tr>
<td>Deans Creek*</td>
<td>3.2</td>
<td>44.51</td>
</tr>
<tr>
<td>Paines Creek*</td>
<td>15.3</td>
<td>129.51</td>
</tr>
<tr>
<td>Mill Creek*</td>
<td>1.4</td>
<td>22.22</td>
</tr>
<tr>
<td>Town Line Creek*</td>
<td>1.7</td>
<td>20.31</td>
</tr>
<tr>
<td>Trumansburg Creek*</td>
<td>13.07</td>
<td>34.07</td>
</tr>
<tr>
<td>Taughannock Creek*</td>
<td>66.8</td>
<td>178.56</td>
</tr>
<tr>
<td>Salmon Creek*</td>
<td>89.2</td>
<td>709.43</td>
</tr>
<tr>
<td>Fall Creek^</td>
<td>129.0</td>
<td>178.80</td>
</tr>
<tr>
<td>Cayuga Inlet^</td>
<td>158.0</td>
<td>70.60</td>
</tr>
</tbody>
</table>

Northern Watershed Loading Extrapolation

- **Total Monitored Drainage Area**: 73.03 mi^2
- **Estimated Inorganic Nitrogen Load**: 493.2 tons/yr

Total:

\[
(332 \text{ mi}^2 / 73.03 \text{ mi}^2) \times 493.22 \text{ tons/yr} = 2,237.7 \text{ tons/yr}
\]
Conclusions

- Nutrient concentrations are significantly higher, on average, in small "northern" streams than in large "southern" streams.
- Assuming monitored streams are representative of unmonitored ones, the “northern” 43% of the watershed is estimated to load roughly 4x more “bioavailable phosphorus” and 2x more inorganic nitrogen to Cayuga Lake than the “southern” 57%. (Note: Organic nitrogen is not yet accounted for.)
- Six Mile Creek and Salmon Creek are the only monitored streams where E. coli counts average lower than the 235 colonies/100 ml threshold for safe swimming at most monitored locations under “base flow” conditions.
- All monitored locations on all streams exceed the 235 colonies/100 ml threshold for safe swimming under stormwater conditions.
- Total phosphorus and total nitrogen concentrations in southern Cayuga Lake have not changed over the past decade; chloride appears to have risen slightly, possibly driven by increases in southern tributary streams.