Monitoring Water Quality in Seneca

County Streams: A Modest Proposal

Presentation to the Seneca County Board of Supervisors June 11, 2019 Seneca County Office Building, 1 DiPronio Drive, Waterloo, NY

Stephen Penningroth, Ph.D., Director, Community Science Institute

Community Science Institute

Independent, nonprofit, tax-exempt environmental organization founded in 2000, website: communityscience.org

<u>Budget and Staff</u>: Four (4) full-time, four (4) part-time; \$311,000 in 2018, ~45 % from local governments in Tompkins and Cayuga Counties

<u>Certified water quality testing lab</u>: NY State and EPA certified for both non-potable water and drinking water since 2003.

QAPP-based, affordable monitoring partnerships between certified lab and volunteer groups: We recruit, train and partner with community-based volunteer groups to build scientifically credible, long-term data sets -- at less than half the cost of environmental consulting firms -- with the goal of understanding and protecting water resources locally and regionally

Free online access to raw data and interpretive maps and graphs: Public can view raw data with maps and graphs, also search and download results, at database.communityscience.org

Biological stream monitoring: CSI staff also partner with volunteer groups to monitor the health of streams as aquatic ecosystems by collecting and identifying small bottom-dwelling organisms called benthic macroinvertebrates (BMI), on a par with NYSDEC's stream monitoring program

CSI Uses Both Chemical and Biological Approaches to Track Water Quality

CSI

Certified Water Testing Lab ELAP# 11790

Chemical and Biological Monitoring Partnerships with Volunteer Groups Public Dissemination of Results in Online Database

Volunteer Monitoring Partnerships

Synoptic Chemical Sampling – Cayuga and Seneca Lake Watersheds

> Impacts from agriculture, urban development, point sources

Red Flag Chemical Monitoring – Upper Susquehanna Watershed

> Baseline and nutrient data collection on small streams

Biological Monitoring (BMI)

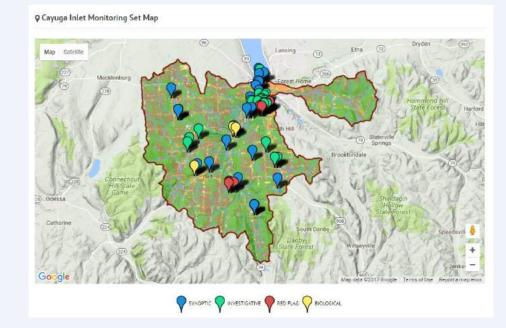
 Any stream of local interest

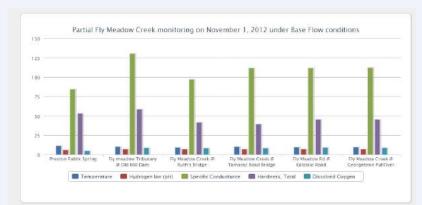
> Aquatic insect communities show longterm water quality

Certified Lab

- Regulated by NYS Department of Health
 - Regulatory & Legal purposes
- Potable and Non-potable water
- Chemistry & Microbiology
- Full list of tests and fees online

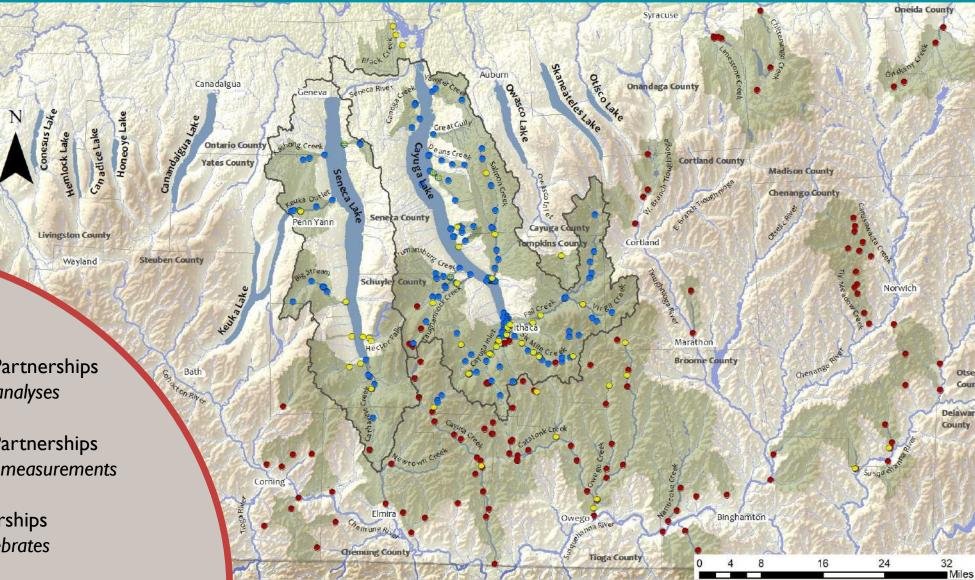
Michi tests for total coliform and E. coli bacteria

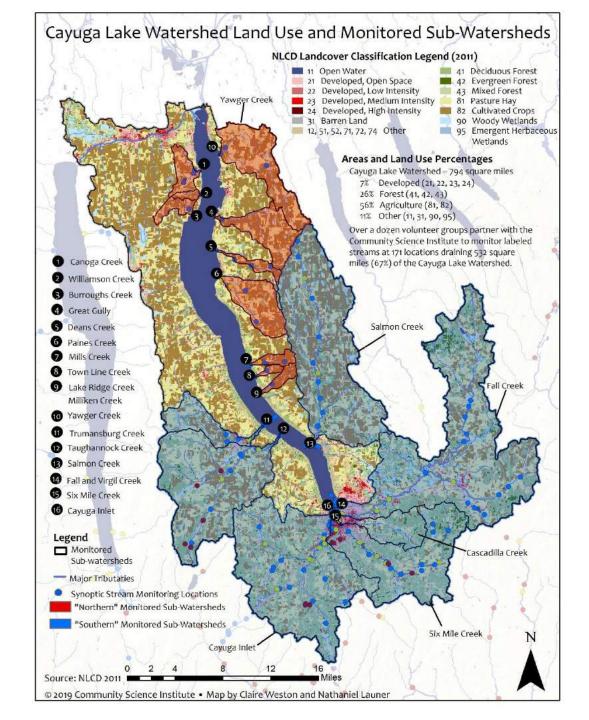

After the assay is complete bacteria colonies grow and are counted on plates


Learn more about testing your drinking water at www.communityscience.org/certified-lab/

Online Databases for Surface Water, Groundwater and (coming in 2019) BMI and HABs

- Raw stream monitoring data are archived in public online databases that may be searched and downloaded free of charge
- Goal is to disseminate scientifically credible results to the public, to local and regional stakeholders, and to government agencies at all levels in order to improve water resource understanding and management
- Streams and lakes database launched in 2006
- Groundwater database launched in 2014
- BMI and HABs databases in 2019

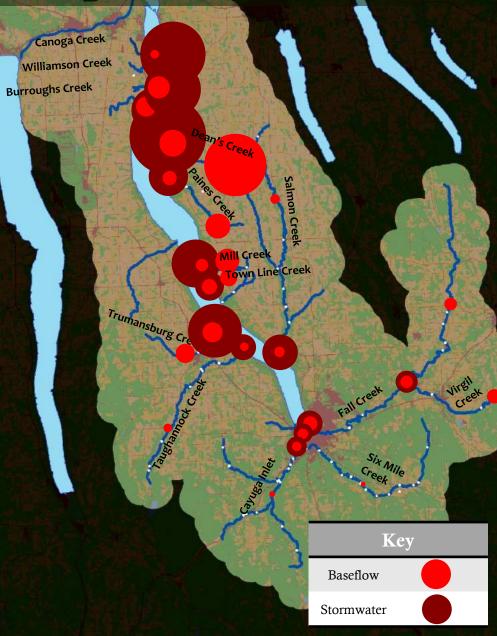

Volunteer Water Monitoring Partnerships



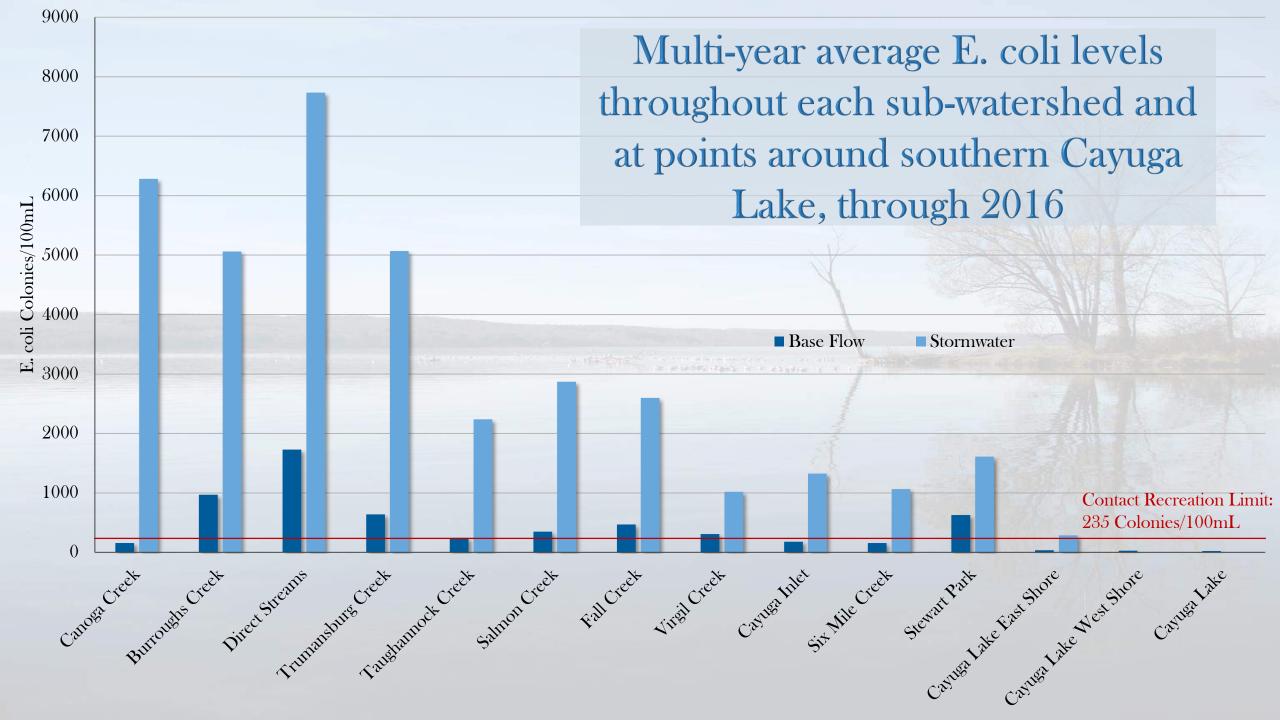
Three Volunteer Water Monitoring Programs

- Synoptic Sampling
- Red Flag Monitoring
- Biomonitoring

- Synoptic Monitoring Partnerships Certified laboratory analyses
- Red Flag Monitoring Partnerships Quality-assured field measurements
- Biomonitoring Partnerships Benthic macroinvertebrates



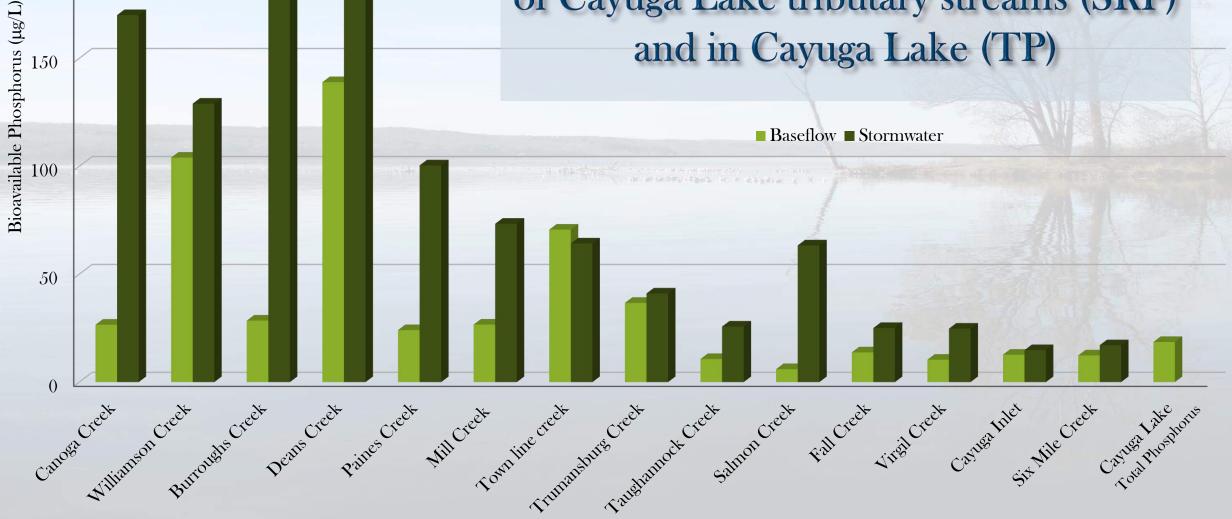
E. coli concentrations in southern Cayuga Lake and along east and west shores (colonies/100 ml)



Selected E. coli Concentrations

Contact recreation limit = 235 colonies/100 ml

Stream (North to South)	Base Flow E. coli at mouth (colonies/100 ml)	Base Flow E. coli at Other Location (colonies/100 ml)	Stormwater E. coli at mouth (colonies/100 ml)
Canoga Creek	235	2.5	12135
Williamson Creek	1350	ND	9170
Burroughs Creek	1140	ND	5435
Dean's Creek	2046	11051	16746
Paine's Creek	620	1799	4306
Mill Creek	432	1581	6475
Town line creek	637	862	2362
Trumansburg Creek	1114	1078	8247
Taughannock Creek	231	210	1887
Salmon Creek	326	287	3560
Fall Creek	549	409	1959
Virgil Creek	439	606	1376
Cayuga Inlet	251	84	1200
Six Mile Creek	311	65	1076
Cascadilla Creek*	424	ND	2659



Multi-Year Average Soluble Reactive ("Bioavailable") Phosphorus Concentrations at Stream Mouths

The second of	Stream (North to South)	Baseflow Soluble Reactive Phosphorus (µgP/L)	Stormwater Soluble Reactive Phosphorus (μgP/L)
	Canoga Creek	26.58	169.98
	Williamson Creek	104.00	129.00
	Burroughs Creek	28.50	241.00
*	Deans Creek	138.95	189.00
	Paines Creek	24.10	100.40
	Mill Creek	26.66	73.37
5	Town line creek	70.66	64.23
	Trumansburg Creek	36.70	41.06
	Taughannock Creek	10.70	25.74
	Salmon Creek	6.01	63.34
	Fall Creek	13.78	25.06
	Virgil Creek	10.37	24.77
	Stewart Park Visitor's Center	59.92	62.20
	Cayuga Inlet	12.70	14.80
	Six Mile Creek	12.35	17.07
	Cascadilla Creek*	18.81	37.59

Multi-year averages of "bioavailable" phosphorus concentrations at mouths of Cayuga Lake tributary streams (SRP) and in Cayuga Lake (TP)

250

200

150

Approx. "Bioavailable Phosphorus" Loading to Cayuga Lake

	Sub-Watershed (North to South)	Monitored Drainage Area (mi²)	Estimated SRP Loading (tons/yr)
	Yawger Creek*	24.9	6.39
	Great Gully*	15.6	2.70
	Canoga Creek*	5.83	1.22
	Williamson Creek*	1.40	0.27
	Burroughs Creek*	3.7	0.95
	Deans Creek*	3.2	1.12
	Paines Creek*	15.3	2.52
	Mill Creek*	1.4	0.24
$\left<\right>$	Town Line Creek*	1.7	0.20
	Trumansburg Creek*	13.07	0.76
	Taughannock Creek*	66.8	2.31
	Salmon Creek*	89.2	7.59
	Fall Creek^	129.0	4.34
	Cayuga Inlet [^]	158.0	3.14

Northern

Southern

Portion

Portion

^Calculated load, average 2011-2013, using USGS Loadest software *Extrapolated from Fall Creek load assuming proportional flows

Total Monitored Drainage Area	Total Estimated SRP Load
73.03 mi ²	15.6 tons/yr
Total Monitored Drainage Area	Total Estimated SRP Load
456.07 mi ²	18.1 tons/yr

Northern Watershed Loading Extrapolation

Northern Watershed Drainage Area = **332 mi**²

(332 mi²/73.03 mi²) x 15.62 tons/yr

71.0 tons/yr

Conclusions

- Levels of nutrients and E.coli tend to be higher in northern Cayuga Lake tributaries than in southern streams.
- Preliminary estimates suggest that despite their smaller size, northern tributaries, taken together, load more nutrients to Cayuga Lake than larger southern streams.
- Only a small fraction of Seneca County's tributary streams are currently being monitored, leaving a large data gap and uncertainty about the County's contribution to nutrient loading.
- Sheldrake Creek and Johnsons Creek are candidates for monitoring.
- One stream would cost ~ \$4,000/yr. assuming 4 sites and 3 events